Abstract

Abstract Solar campfires are fine-scale heating events, recently observed by Extreme Ultraviolet Imager (EUI) on board Solar Orbiter. Here we use EUI 174 Å images, together with EUV images from Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), and line-of-sight magnetograms from SDO/Helioseismic and Magnetic Imager (HMI) to investigate the magnetic origin of 52 randomly selected campfires in the quiet solar corona. We find that (i) the campfires are rooted at the edges of photospheric magnetic network lanes; (ii) most of the campfires reside above the neutral line between majority-polarity magnetic flux patch and a merging minority-polarity flux patch, with a flux cancelation rate of ∼1018 Mx hr−1; (iii) some of the campfires occur repeatedly from the same neutral line; (iv) in the large majority of instances, campfires are preceded by a cool-plasma structure, analogous to minifilaments in coronal jets; and (v) although many campfires have “complex” structure, most campfires resemble small-scale jets, dots, or loops. Thus, “campfire” is a general term that includes different types of small-scale solar dynamic features. They contain sufficient magnetic energy (∼1026–1027 erg) to heat the solar atmosphere locally to 0.5–2.5 MK. Their lifetimes range from about 1 minute to over 1 hr, with most of the campfires having a lifetime of <10 minutes. The average lengths and widths of the campfires are 5400 ± 2500 km and 1600 ± 640 km, respectively. Our observations suggest that (a) the presence of magnetic flux ropes may be ubiquitous in the solar atmosphere and not limited to coronal jets and larger-scale eruptions that make CMEs, and (b) magnetic flux cancelation is the fundamental process for the formation and triggering of most campfires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.