Abstract

Abstract We investigate in detail the magnetic cause of minifilament eruptions that drive coronal-hole jets. We study 13 random on-disk coronal-hole jet eruptions, using high-resolution X-ray images from the Hinode/X-ray telescope(XRT), EUV images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), and magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). For all 13 events, we track the evolution of the jet-base region and find that a minifilament of cool (transition-region-temperature) plasma is present prior to each jet eruption. HMI magnetograms show that the minifilaments reside along a magnetic neutral line between majority-polarity and minority-polarity magnetic flux patches. These patches converge and cancel with each other, with an average cancelation rate of ∼0.6 × 1018 Mx hr−1 for all 13 jets. Persistent flux cancelation at the neutral line eventually destabilizes the minifilament field, which erupts outward and produces the jet spire. Thus, we find that all 13 coronal-hole-jet-driving minifilament eruptions are triggered by flux cancelation at the neutral line. These results are in agreement with our recent findings for quiet-region jets, where flux cancelation at the underlying neutral line triggers the minifilament eruption that drives each jet. Thus, from that study of quiet-Sun jets and this study of coronal-hole jets, we conclude that flux cancelation is the main candidate for triggering quiet-region and coronal-hole jets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call