Abstract
We propose a machine learning embedded method of parameters determination in the constitutional models of hydrogels. It is found that the developed logistic regression-like algorithm for hydrogel swelling allows us to determine the fitting parameters based on known swelling ratio and chemical potential. We also put forward the neural networks-like algorithm, which, by its own property, can converge faster as the layer deepens. We then develop neural networks-like algorithm for hydrogel under uniaxial load for experimental application purpose. Finally, we propose several machine learning embedded potential applications for hydrogels, which would provide directions for machine learning-based hydrogel research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.