Abstract

Abstract Current ASME Section III, Division 5 code provides elastic, simplified inelastic and inelastic analysis options for designing nuclear power plant components for elevated temperature service. These analyses methods may fail to capture the complex creep-fatigue response and damage accumulation in materials at elevated temperatures. Hence, for analysis and design of the nuclear power plant components at elevated temperature, a full inelastic analysis that can simulate creep-fatigue responses may be needed. Existing ASME code neither provides guidelines for using full inelastic analysis nor recommends the type of constitutive model to be used. Hence, a unified rate-dependent constitutive model incorporating a damage parameter will be developed, and its parameters for base metal will be determined. In addition, a full inelastic analysis methodology using this model to analyze the creep-fatigue performance of components for nuclear power applications will be developed. Base metal 800H (BM800H) data are collected from literature to determine constitutive material model parameters. The parameter determination methodology for a constitutive model is discussed. The optimized parameter set for BM 800H at different temperatures will be presented in the paper. Recommendations are provided on the constitutive model selection and its parameter determination techniques. In the future, this work will be continued for diffusion bonded Alloy 800H (DB800H) material, and obtained parameters will be compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.