Abstract
Reinforced concrete (RC) flat slabs are widely employed in modern construction, and accurately predicting their load-carrying capacity is crucial for ensuring safety and reliability. Existing design methods and empirical equations still exhibit discrepancies in determining the ultimate load capacity of flat slabs. This study aims to develop a robust machine learning model, specifically the M5P model tree, for predicting the punching shear capacity of a RC flat slab without shear reinforcement. A comprehensive dataset of 482 experimentally tested flat slabs without shear reinforcement was gathered through an extensive literature review and utilized for the development of the M5P model. The model takes into account influential parameters, such as slab thickness, longitudinal reinforcement ratios, and concrete strength. The performance of the proposed M5P model was compared with existing design codes and other empirical models. The comparison highlights that the developed M5P model tree provides a more accurate and reliable prediction of the punching shear capacity of RC flat slabs. This study contributes to the advancement of structural engineering knowledge and has the potential to improve the design and safety assessment of concrete flat slab structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.