Abstract

This paper presents the results of a two-phase experimental program investigating the punching shear behavior of fiber reinforced polymer reinforced concrete (FRP RC) flat slabs with and without carbon fiber reinforced polymer (CFRP) shear reinforcement. In the first phase, problems of bond slip and crack localization were identified. Decreasing the flexural bar spacing in the second phase successfully eliminated those problems and resulted in punching shear failure of the slabs. However, CFRP shear reinforcement was found to be inefficient in enhancing significantly the slab capacity due to its brittleness. A model, which accurately predicts the punching shear capacity of FRP RC slabs without shear reinforcement, is proposed and verified. For slabs with FRP shear reinforcement, it is proposed that the concrete shear resistance is reduced, but a strain limit of 0.0045 is recommended as maximum strain for the reinforcement. Comparisons of the slab capacities with ACI 318-95, ACI 440-98, and BS 8110 punching shear code equations, modified to incorporate FRP reinforcement, show either overestimated or conservative results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.