Abstract

MEG and EEG studies of event-related responses often involve comparisons of grand averages, requiring homogeneity of the variances. Here, we examine the possibility, implied by the nature of neural sources and the measuring principles involved, that the M100 component of auditory-evoked magnetic fields of different subjects, hemispheres, to different stimuli, and at different sensors differs by scaling factors. Such a multiplicative model predicts a linear increase in the standard deviation with the mean, and thus would have important implications for averaging and comparing such data. Our analyses, at the sensor and the source level, clearly show that the multiplicative model applies. We therefore propose geometric, rather than arithmetic, averaging of the M100 component across subjects and suggest a novel and superior normalization procedure. Our results question the justification of the common practice of subtracting arithmetic grand averages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.