Abstract
In this study, we have used photoaffinity labeling by [32P]azido-GTP as well as [32P]ADP-ribosylation by pertussis toxin (PT) and cholera toxin (CT) to identify GTP-binding proteins associated with mouse T-lymphoma plasma membranes. Our results indicate that GP85 (CD44) can be photoaffinity labeled by [32P] azido-GTP and [32P]ADP-ribosylated by both PT and CT. Using purified GP85 (CD44) obtained by Triton X-100 extraction, wheat germ agglutinin-Sepharose, and anti-GP85 (CD44) antibody affinity chromatographies, we have further characterized GP85 (CD44) as a GTP-binding protein. GP85 (CD44) is found to bind guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) in a time- and dose-dependent manner with a dissociation constant of 0.83 nM. Importantly, GP85 (CD44) appears to display a GTPase activity which hydrolyzes [gamma-32P]GTP at a rate of 0.011 mol of Pi released/mol of GP85 (CD44)/min. This GTPase activity can be readily inhibited by PT- or CT-mediated ribosylation of GP85 (CD44). Most interestingly, GTP binding significantly enhances the interaction of purified GP85 (CD44) with ankyrin, whereas ADP-ribosylation of GP85 (CD44) by PT or CT inhibits the GTP-induced increase in ankyrin binding to GP85 (CD44). In addition to GP85 (CD44) being the first reported transmembrane GTP-binding protein, these results suggest that GTP plays an important role in promoting the interaction between GP85 (CD44) and its underlying membrane cytoskeleton through ankyrin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have