Abstract
The Lighthill–Panton and Lyman–Huggins interpretations of vorticity dynamics are extended to the dynamics of enstrophy. There exist two competing definitions of the vorticity current tensor, which describes the flow rate of vorticity in the fluid interior, and the corresponding boundary vorticity flux, which represents the local vorticity creation rate on a boundary. It is demonstrated that each definition of the vorticity current tensor leads to a consistent set of definitions for the enstrophy current, boundary enstrophy flux and the enstrophy dissipation term. This leads to two alternative interpretations of vorticity and enstrophy dynamics: the Lighthill–Panton and Lyman–Huggins interpretations. Although the kinematic evolution of the vorticity and enstrophy fields are the same under each set of definitions, the dynamical interpretation of the motion generally differs. For example, we consider the Stokes flow over a rotating sphere, and find that the flow approaches a steady state where, under the Lyman–Huggins interpretation, there is no enstrophy creation or dissipation. Under the Lighthill–Panton interpretation, however, the steady-state flow features a balance between the continuous generation and subsequent dissipation of enstrophy. Moreover, the Lyman–Huggins interpretation has previously been shown to offer several benefits in understanding the dynamics of vorticity, and therefore it is beneficial to extend this interpretation to the dynamics of enstrophy. For example, the Lyman–Huggins interpretation allows the creation of vorticity, and therefore enstrophy, to be interpreted as an inviscid process, due to the relative acceleration between the fluid and the boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.