Abstract

The onset of the transition from 2D to 3D structures in pure gold clusters remains a matter of continuing debate. In this theoretical study we revisit several planar and non-planar structural motifs of the size Au10 with the aim to clarify this issue. Computations using a long-range corrected exchange-correlation functional LC-BLYP, coupled-cluster theories CCSD(T) and PNO-LCCSD(T)-F12 reveal that, at variance with previous reports on the preference of a planar elongated hexagon, both planar and nonplanar isomers of the neutral Au10 are energetically degenerated up to 300 K. Its 3D equilibrium geometry is a core-shell structure which can be built up from a trigonal prism by capping four extra Au atoms outside. A comparison to the available experimental vibrational spectra allows us to argue that both lowest-lying 2D and 3D isomers of Au10 likely coexist in the molecular beam during measurement of its FIR spectra. This result also suggests that the 2D-3D transition of neutral gold clusters occurs at the size Au10.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call