Abstract
The low-carbon vehicle routing problem with dynamic speeds on steep roads (LCVRPDS-SR) considers the combined effects of dynamic speeds, steep roads, and loads on carbon emissions. Earlier low-carbon vehicle routing problems typically assumed that vehicles travel at a constant speed on flat roads. However, such models do not apply in urban or rural areas with steep roads. Although the subsequent studies further explored the effect of steep roads, their performance are still suboptimal since they fail to take into account the varying speeds on the terrain. This paper proposes an extended LCVRPDS-SR model that tackles dynamic speed decisions on steep roads for the low-carbon vehicle routing problem. The objective function is non-linear and considers only environmental factors. Then an improved adaptive large neighborhood search algorithm is presented, including a new speed optimization algorithm and several improved removal and insertion operators. Extensive experiments are conducted on the generated instances to verify the effectiveness of the model and algorithm and derive managerial insights. The significant reduction in greenhouse gas emissions is achieved when considering dynamic speeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.