Abstract
Solute (NaCl) miscible displacement experiments are performed on long disturbed soil columns to determine the hydrodynamic longitudinal dispersion coefficient and correlate it with the variability of the local permeability. The solute concentration, averaged over several cross-sections along the soil column, is monitored by measuring the electrical resistance between rod electrodes. The measured solute concentration breakthrough curves are fitted simultaneously with the one-region and two-region analytical models of the 1-D advection–dispersion equation to estimate the longitudinal dispersion coefficient, D L, as a function of Peclet number, Pe, for common groundwater flow velocities (2 < Pe < 50). Macroscopic simulations of miscible displacement in 2-D porous media described by a periodic permeability field with low, moderate and high variability are employed to evaluate the predictability of the one-region and two-region models, and the sensitivity of the dispersion coefficients and flow velocities estimated from soil column displacement tests to the variance of local permeability. When the variability of the local permeability becomes high, the one-region model fails, while the two-region model is capable of reproducing satisfactorily the breakthrough curves, and providing reliable values of dispersion coefficients. The two mean pore velocities estimated by the two-region model represent, on average, a fast and a slow mean velocity of the dispersion front, whereas their difference is a measure of the transient evolution of the width of the equi-concentration dispersion front.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have