Abstract

More than 600 species of conifers (phylum Pinophyta) serve as the backbone of the Earth’s terrestrial plant community and play key roles in global carbon and water cycles. Although coniferous forests account for a large fraction of global wood production, their productivity relies largely on the use of genetically improved seeds. However, acquisition of such seeds requires recurrent selection and testing of genetically superior parent trees, eventually followed by the establishment of a seed orchard to produce the improved seeds. The breeding cycle for obtaining the next generation of genetically improved seeds can be significantly lengthened when a target species has a long juvenile period. Therefore, development of methods for diminishing the juvenile phase is a cost-effective strategy for shortening breeding cycle in conifers. The molecular regulatory programs associated with the reproductive transition and annual reproductive cycle of conifers are modulated by environmental cues and endogenous developmental signals. Mounting evidence indicates that an increase in global average temperature seriously threatens plant productivity, but how conifers respond to the ever-changing natural environment has yet to be fully characterized. With the breakthrough of assembling and annotating the giant genome of conifers, identification of key components in the regulatory cascades that control the vegetative to reproductive transition is imminent. However, comparison of the signaling pathways that control the reproductive transition in conifers and the floral transition in Arabidopsis has revealed many differences. Therefore, a more complete understanding of the underlying regulatory mechanisms that control the conifer reproductive transition is of paramount importance. Here, we review our current understanding of the molecular basis for reproductive regulation, highlight recent discoveries, and review new approaches for molecular research on conifers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call