Abstract
Microvillar photoreceptors of invertebrates exhibit a light-induced rise in the intracellular concentration of free calcium (Cai) that results in part from release of calcium from an intracellular compartment. This light-induced release of calcium appears to result from a cascade of reactions that involve rhodopsin, a GTP-binding protein and a phospholipase-C which releases inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) from the plasma membrane; the Ins(1,4,5)P3 acts to release calcium from smooth endoplasmic reticulum. In the ventral photoreceptor of the horseshoe crab Limulus polyphemus not all of the endoplasmic reticulum is subject to calcium release by Ins(1,4,5)P3. Only endoplasmic reticulum in the light-sensitive region of the cell is competent to release calcium in response to Ins(1,4,5)P3. The release of calcium by Ins(1,4,5)P3 in ventral photoreceptors appears to be subject to feedback inhibition through elevated Cai. We suggest that this feedback inhibition contributes to sensory adaptation in the photoreceptor and may account for oscillatory membrane responses sometimes observed with large injections of Ins(1,4,5)P3.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have