Abstract

In the standard model in universal extra dimensions (UED) the mass of the Higgs field is driven to the cutoff of the higher-dimensional theory. This re-introduces a small hierarchy since the compactification scale 1/R should not be smaller than the weak scale. In this paper we study possible solutions to this problem by considering five-dimensional theories where the Higgs field potential vanishes at tree level due to a global symmetry. We consider two avenues: a Little Higgs model and a Twin Higgs model. An obstacle for the embedding of these four-dimensional models in five dimensions is that their logarithmic sensitivity to the cutoff will result in linear divergences in the higher dimensional theory. We show that, despite the increased cutoff sensitivity of higher dimensional theories, it is possible to control the Higgs mass in these two scenarios. For the Little Higgs model studied, the phenomenology will be significantly different from the case of the standard model in UED. This is due to the fact that the compactification scale approximately coincides with the scale where the masses of the new states appear. For the case of the Twin Higgs model, the compactification scale may be considerably lower than the scale where the new states appear. If it is as low as allowed by current limits, it would be possible to experimentally observe the standard model Kaluza-Klein states as well as a new heavy quark. On the other hand, if the compactification scale is higher, then the phenomenology at colliders would coincide with the one for the standard model in UED.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call