Abstract

We consider theories in which the Standard Model gauge fields propagate in extra dimensions whose size is around the electroweak scale. The Standard Model quarks and leptons may either be localized to a brane or propagate in the bulk. This class of theories includes models of Scherk-Schwarz supersymmetry breaking and universal extra dimensions. We consider the problem of stabilizing the volume of the extra dimensions. We find that for a large class of stabilization mechanisms the field which corresponds to fluctuations of the volume remains light even after stabilization, and has a mass in the $10^{-3}$ eV range. In particular this is the case if stabilization does not involve dynamics at scales larger than the cutoff of the higher dimensional Standard Model, and if the effective theory below the compactification scale is four dimensional. The mass of this field is protected against large radiative corrections by the general covariance of the higher dimensional theory and by the weakness of its couplings, which are Planck suppressed. Its couplings to matter mediate forces whose strength is comparable to that of gravity and which can give rise to potentially observable deviations from Newton's Law at sub-millimeter distances. Current experiments investigating short distance gravity can probe extra dimensions too small to be accessible to current collider experiments. In particular for a single extra dimension stabilized by the Casimir energy of the Standard Model fields compactification radii as small as 5 inverse TeV are accessible to current sub-millimeter gravity experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call