Abstract

The problem of the linear stability of plane-parallel shear flows of a vibrationally excited compressible diatomic gas is investigated using a two-temperature gas dynamics model. The necessary and sufficient conditions for stability of the flows considered are obtained using the energy integrals of the corresponding linearized system for the perturbations. It is proved that thermal relaxation produces an additional dissipation factor, which enhances the flow stability. A region of eigenvalues of unstable perturbations is distinguished in the upper complex half-plane. Numerical calculations of the eigenvalues and eigenfunctions of the unstable inviscid modes are carried out. The dependence on the Mach number of the carrier stream, the vibrational relaxation time τ and the degree of non-equilibrium of the vibrational mode is analysed. The most unstable modes with maximum growth rate are obtained. It is shown that in the limit there is a continuous transition to well-known results for an ideal fluid as the Mach number and τ approach zero and for an ideal gas when τ → 0.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call