Abstract

This chapter is devoted to investigations of linear stability of plane-parallel flows of an inviscid nonheat-conducting vibrationally excited gas. Some classical results of the theory of linear stability of ideal gas flows, such as the first and second Rayleigh’s theorems and Howard’s theorem, are generalized. An equation of the energy balance of disturbances is derived, which shows that vibrational relaxation generates an additional dissipative factor, which enhances flow stability. Calculations of the most unstable inviscid modes with the maximum growth rates in a free shear layer are described. It is shown that enhancement of excitation of vibrational modes leads to reduction of the growth rates of inviscid disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.