Abstract

The linear ordering problem is among core problems in combinatorial optimization. There is a squared non-negative matrix and the goal is to find the permutation of rows and columns which maximizes the sum of superdiagonal values. In this paper, we consider that columns of the matrix belong to different clusters and that the goal is to order the clusters. We introduce a new approach for the case when exactly one representative is chosen from each cluster. The new problem is called the linear ordering problem with clusters and consists of both choosing a representative for each cluster and a permutation of these representatives, so that the sum of superdiagonal values of the sub-matrix induced by the representatives is maximized. A combinatorial linear model for the linear ordering problem with clusters is given, and eventually, a hybrid metaheuristic is carefully designed and developed. Computational results illustrate the performance of the model as well as the effectiveness of the metaheuristic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.