Abstract

Пусть $p(n)$ - количество всех целочисленных разбиений положительного целого числа $n$, и пусть $\lambda $ - разбиение, выбранное случайно и равновероятно из всех таких $p(n)$ разбиений. Известно, что каждое разбиение $\lambda $ имеет единственное графическое представление, состоящее из $n$ неперекрывающихся ячеек на плоскости, называемое диаграммой Юнга. В качестве второго шага нашего выборочного эксперимента мы выбираем из $n$ ячеек диаграммы Юнга разбиения $\lambda $ случайно и равновероятно ячейку $c$. Для больших значений $n$ мы изучаем асимптотическое поведение длины крюка $Z_n=Z_n(\lambda ,c)$ ячейки $c$ случайного разбиения $\lambda $. Эта двухэтапная выборочная процедура порождает вероятностную меру, которая приписывает вероятность $1/np(n)$ каждой паре $(\lambda ,c)$. Показано, что относительно этой вероятностной меры случайная величина $\pi Z_n/\sqrt {6n}$ слабо сходится при $n\to \infty $ к случайной величине, плотность функции распределения которой равна $6y/(\pi ^2(e^y-1))$, если $0<y<\infty $, и нулю в остальных случаях. Доказательство основано на подходе Хеймана к исследованию седловой точки для допустимых степенных рядов.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call