Abstract

In this paper, we give a systematical study of the local structures and fractal indices of the limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers. For a given Pisot number in the interval ( 1 , 2 ) , we construct a finite family of non-negative matrices (maybe non-square), such that the corresponding fractal indices can be re-expressed as some limits in terms of products of these non-negative matrices. We are especially interested in the case that the associated Pisot number is a simple Pisot number, i.e., the unique positive root of the polynomial x k - x k - 1 - … - x - 1 ( k = 2 , 3 , … ). In this case, the corresponding products of matrices can be decomposed into the products of scalars, based on which the precise formulas of fractal indices, as well as the multifractal formalism, are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.