Abstract

Atomic force microscopy (AFM) routinely achieves structural information in the sub-nm length scale. Measuring time resolved properties on this length scale to understand kinetics at the nm scale remains an elusive goal. We present a general analysis of the lower limit for time resolution in AFM. Our finding suggests that the time resolution in AFM is ultimately limited by the well-known thermal limit of AFM and not as often proposed by the mechanical response time of the force sensing cantilever. We demonstrate a general pump-probe approach using the cantilever as a detector responding to the averaged signal. This method can be applied to any excitation signal such as electrical, thermal, magnetic or optical. Experimental implementation of this method allows us to measure a photocarrier decay time of ∼1 ps in low temperature grown GaAs using a cantilever with a resonant frequency of 280 kHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call