Abstract
Atomic force microscopy (AFM) routinely achieves structural information in the sub-nm length scale. Measuring time resolved properties on this length scale to understand kinetics at the nm scale remains an elusive goal. We present a general analysis of the lower limit for time resolution in AFM. Our finding suggests that the time resolution in AFM is ultimately limited by the well-known thermal limit of AFM and not as often proposed by the mechanical response time of the force sensing cantilever. We demonstrate a general pump-probe approach using the cantilever as a detector responding to the averaged signal. This method can be applied to any excitation signal such as electrical, thermal, magnetic or optical. Experimental implementation of this method allows us to measure a photocarrier decay time of ∼1 ps in low temperature grown GaAs using a cantilever with a resonant frequency of 280 kHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.