Abstract

Inconel 738LC (IN738LC) is a nickel-based superalloy specially used in the hot section components of turbine engines due to its outstanding hot corrosion resistance and mechanical properties under high temperatures. However, one of the main drawbacks of this superalloy is its susceptibility to cracking when it is manufactured by Laser Powder Bed Fusion (LPBF). This paper describes the effect of 400 W laser power and 90° rotation strategy on the formation of cracks and the capability of Hot Isostatic Pressing (HIP) post-treatment to substantially reduce them in the LPBF manufactured IN738LC samples. Based on the characterization of the cracks, the most important finding from this research work was the identification of the limit of crack width at 6 μm, beyond which the HIP treatment is unable to effect crack healing. Furthermore, this research shows that the HIP treatment leads to microstructural changes in the IN738LC samples with a massive precipitation of γ´ phase. Indeed, the formation of precipitates implied an increase in the microhardness of up to 23 %, which demonstrates that the HIP treatment also affects the mechanical properties of the IN738LC superalloy. It was therefore shown that the HIP treatment could be a crucial process to substantially reduce the defects of the additively manufactured parts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call