Abstract

Cancer is one of the leading causes of morbidity and mortality worldwide and nanotechnology has a significant potential to enhance the therapeutic and diagnostic performance of anti-cancer agents. Our work offers a simple and feasible strategy for thiocompound nanomedicines to be used in cancer therapy. Novel gold nanoparticles conjugated with thioabiraterone (AuNP-S-AB) were synthesized and significant new analytical methodologies were developed for their characterization by UV-Vis, TEM, IR, NMR and TGA. Our synthetic approach was based on the ligand exchange of citrates to thioabiraterone on gold nanoparticles. The average particle size of AuNP-S-AB was 14.5nm with a spherical shape. The identity of thioabiraterone on the gold nanoparticles was proved by NMR and IR spectroscopy. The coverage of the gold nanoparticles with 40.9% (m/m) thioabiraterone was calculated from a TGA analysis. Molecular interactions between the thiol group of thioabiraterone and gold nanoparticles were evaluated through a combined experimental and theoretical study using the density functional theory (DFT). Additionally, an experiment conducted on hepatocytes or human prostate epithelial cells proved that newly synthesized thiol forms of abiraterone, as well as AuNP-S-AB, are more biocompatible than abiraterone. Our proposed idea of delivering abiraterone with our newly designed AuNP-S-AB may constitute a promising and novel prospect in cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.