Abstract
Abstract The energetics of a Southern Hemisphere cyclone wave have been analyzed using ECMWF data and the results of a limited-area model simulation. An analysis of the energy budget for a storm that developed in the eastern Pacific on 4–6 September 1987 showed the advection of the geopotential height field by the ageostrophic wind to be both a significant source and the primary sink of eddy kinetic energy. Air flowing through the wave gained kinetic energy via this term as it approached the energy maximum and then lost it upon exiting. Energy removal by diffusion, friction, and Reynolds stresses was found to be small. The most important conclusion was that, while the wave grew initially by poleward advection of heat as expected from baroclinic theory, the system evolved only up to the point where this source of eddy energy and the conversion of eddy potential to eddy kinetic energy (typically denoted “ωα”) was compensated for by energy flux divergence (dispersion of energy), mainly of the ageostrophic ge...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.