Abstract
We prove that the Lie algebra of skew-symmetric elements of the free associative algebra of rank 2 with respect to the standard involution is generated as a module by the elements [a, b] and [a, b]3, where a and b are Jordan polynomials. Using this result we prove that the Lie algebra of Jordan derivations of the free Jordan algebra of rank 2 is generated as a characteristic F-module by two derivations. We show that the Jordan commutator s-identities follow from the Glennie-Shestakov s-identity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.