Abstract

Let n be a positive integer. For each \({0 \leq j \leq n-1}\), we let \({C_{n}^{j}}\) denote Cayley graph for the cyclic group \({\mathbb{Z}_n}\) with respect to the subset \({\{1, j\}}\). For any such pair (n, j), we compute the size of the Grothendieck group of the Leavitt path algebra \({L_K(C_{n}^{j})}\); the analysis is related to a collection of integer sequences described by Haselgrove in the 1940s. When j = 0, 1, or 2, we are able to extract enough additional information about the structure of these Grothendieck groups so that we may apply a Kirchberg-Phillips-type result to explicitly realize the algebras \({L_K(C_{n}^{j})}\) as the Leavitt path algebras of graphs having at most three vertices. The analysis in the j = 2 case leads us to some perhaps surprising and apparently nontrivial connections to the classical Fibonacci sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.