Abstract
We achieve an extremely useful description (up to isomorphism) of the Leavitt path algebra LK(E) of a finite graph E with coefficients in a field K as a direct sum of matrix rings over K, direct sum with a corner of the Leavitt path algebra LK(F) of a graph F for which every regular vertex is the base of a loop. Moreover, in this case one may transform the graph E into the graph F via some step-by-step procedure, using the “source elimination” and “collapsing” processes. We use this to establish the main result of the article, that every nonzero corner of a Leavitt path algebra of a finite graph is isomorphic to a Leavitt path algebra. Indeed, we prove a more general result, to wit, that the endomorphism ring of any nonzero finitely generated projective LK(E)-module is isomorphic to the Leavitt path algebra of a graph explicitly constructed from E. Consequently, this yields in particular that every unital K-algebra which is Morita equivalent to a Leavitt path algebra is indeed isomorphic to a Leavitt path algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.