Abstract

The general theory of relativity (GR) states that the matter that generates the gravitational field cannot move arbitrarily, it must obey certain equations that follow from the equations of the gravitational field as conditions for their compatibility. In this article we analyze the laws of motion of charged matter in gauge theories of gravitation with higher derivatives of field variables. Object: to consider the laws of motion in gauge theories of gravitation. Task to analyze the laws of motion of charged matter in gauge theories of gravitation with higher derivatives of field variables. Conclusions: it is proved that the equation of an arbitrary gauge field of internal symmetry regardless of the specific type of its Lagrangian can be written both in the form of Einstein's equation and in superpotential form, i.e. as an expression of the total current of gauge charges through the superpotential determined by a specific type of Lagrangian that is, in the form of the Young-Mills equations. So this is a consequence of purely-symmetry theory. Also, a statement is proved in which the constraints on the equations of some fields, which follow from the assumption of the equations of motion for other fields. Research perspectives: nowadays, scientists register gravitational waves and analyze the conditions for their emission, and interest in the problem of motion has been renewed. Note that theories of gravity with higher derivatives of field variables in the Lagrangian of the gravitational field (for example, f(R)-theories) have become very popular in the present. Note that on the basis of the laws of motion of charged matter considered in the article in the gauge theory of gravity, it is possible to successfully further investigate the laws of motion in other theories of gravity, which can be useful in various areas of theoretical and experimental physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.