Abstract

In this paper, we present two methods for the simulations of phase-locked loops (PLL) based on the latency insertion method (LIM). First, we present a novel and simple behavioral model based simulation method that exploits the latency in the PLL formulation and utilizes a leapfrog time stepping discretization scheme to solve for the transient response of the PLL. Next, we apply LIM to the simulation of PLLs at the transistor level. Various PLL dynamic responses such as lock-in, pull-in and pull-out conditions are simulated and comparisons with analytical solutions are depicted when available. Results are also compared to traditional SPICE-based methods. Finally, a bottom-up behavioral simulation approach is illustrated by using LIM to generate individual models for the PLL components which are then used in an overall behavioral level simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.