Abstract
Two event-related potential (ERP) components are commonly observed in recognition memory tasks: the Frontal Negativity (FN400) and the Late Positive Component (LPC). These components are widely interpreted as neural correlates of familiarity and recollection, respectively. However, the interpretation of LPC effects is complicated by inconsistent results regarding the timing of ERP amplitude differences. There are also mixed findings regarding how LPC amplitudes covary with decision confidence. Critically, LPC effects have almost always been measured using fixed time windows relative to memory probe stimulus onset, yet it has not been determined whether LPC effects are time locked to the stimulus or the recognition memory decision. To investigate this, we analysed a large (n = 132) existing dataset recorded during recognition memory tasks with old/new decisions followed by post-decisional confidence ratings. We used ERP deconvolution to disentangle contributions to LPC effects (defined as differences between hits and correct rejections) that were time locked to either the stimulus or the vocal old/new response. We identified a left-lateralised parietal LPC effect that was time locked to the vocal response rather than probe stimulus onset. We also isolated a response-locked, midline parietal ERP correlate of confidence that influenced measures of LPC amplitudes at left parietal electrodes. Our findings demonstrate that, contrary to widespread assumptions, the LPC effect is time locked to the recognition memory decision and is best measured using response-locked ERPs. By extension, differences in response time distributions across conditions of interest may lead to substantial measurement biases when analysing stimulus-locked ERPs. Our findings highlight important confounding factors that further complicate the interpretation of existing stimulus-locked LPC effects as neural correlates of recollection. We recommend that future studies adopt our analytic approach to better isolate LPC effects and their sensitivity to manipulations in recognition memory tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.