Abstract

A model of Langmuir monolayer liquid adsorption into effective pores was used to study the monolayer adsorption capacity by theory calculation. The activated carbon (AC) from rice husk with NaOH activation was selected as adsorbent to uptake phenol and methylene blue (MB). Materials were characterized by N2 adsorption, infrared spectroscopy (IR), and ultraviolet spectrophotometer (UV). In adsorption kinetics, it was observed that the experimental data were well explained by the pseudo second-order equation. Moreover, the Langmuir isotherm was more suitable to explicate results than Freundlich isotherm, implying the monolayer adsorption. Basing on the molecule diameter of 0.72nm and cross-sectional area of 0.414nm2 for phenol, the theoretical adsorption capacities were close to the actual values with small relative error (<7%). Due to the large molecule size of MB (0.98nm, 0.749nm2), the sample with wider pores activated at 900°C exhibited the higher adsorption capacity than AC at 700°C. And the capillary condensation increased the adsorption capacities, consistent with the order of average pore diameter for ACs. From the model, it indicated that the adsorbent was suitable for adsorption when its critical pore width was two times of adsorbate molecule diameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call