Abstract
A number theoretic approach to string compactification is developed for Calabi–Yau hypersurfaces in arbitrary dimensions. The motivic strategy involved is illustrated by showing that the Hecke eigenforms derived from Galois group orbits of the holomorphic two-form of a particular type of K3 surface can be expressed in terms of modular forms constructed from the worldsheet theory. The process of deriving string physics from spacetime geometry can be reversed, allowing the construction of K3 surface geometry from the string characters of the partition function. A general argument for K3 modularity is given by combining mirror symmetry with the proof of the Shimura–Taniyama conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.