Abstract

Seiberg and Witten have shown that the non-perturbative stability of string physics on conformally compactified spacetimes is related to the behaviour of the areas and volumes of certain branes as the brane is moved towards infinity. If, as is particularly natural in quantum cosmology, the spatial sections of an accelerating cosmological model are flat and compact, then the spacetime is on the brink of disaster: it turns out that the version of inflationary spacetime geometry with toral spatial sections is marginally stable in the Seiberg–Witten sense. The question is whether the system remains stable before and after inflation, when the spacetime geometry is distorted away from the inflationary form but still has flat spatial sections. We show that it is indeed possible to avoid disaster, but that requiring stability at all times imposes non-trivial conditions on the spacetime geometry of the early universe in string cosmology. This in turn allows us to suggest a candidate for the structure which, in the earliest universe, forbids cosmological singularities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.