Abstract
We consider the Landau--Kolmogorov problem on a finite interval which is to find an exact bound for $\|f^{(k)}\|$, for $0 < k < n$, given bounds $\|f\| \le 1$ and $\|f^{(n)}\| \le \sigma$, with $\|\cdot\|$ being the max-norm on $[-1,1]$. In 1972, Karlin conjectured that this bound is attained at the end-point of the interval by a certain Zolotarev polynomial or spline, and that was proved for a number of particular values of $n$ or $\sigma$. Here, we provide a complete proof of this conjecture in the polynomial case, i.e. for $0 \le \sigma \le \sigma_n := \|T_n^{(n)}\|$, where $T_n$ is the Chebyshev polynomial of degree $n$. In addition, we prove a certain Schur-type estimate which is of independent interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.