Abstract
Response surface methodology (RSM) based on a three-level, three-variable central composite rotatable design was applied to evaluate the effects of the parameters such as ratio of rice straw (Oryza sativa)/poplar (Populus deltoids) wood particle bonded with urea-formaldehyde resin in panels, species of wood veneer coating these panels and amount of adhesive in glue line on the modulus of rupture (MOR), internal bonding (IB), and thickness swelling (TS) of panels. Mathematical model equations were derived by computer simulation programming to optimize the properties of the particleboard. These equations that are second-order response functions representing MOR, IB, and TS were expressed as functions of three operating parameters of panel properties. Predicted values were found to be in a good agreement with experimental values (R 2 values of 0.96, 0.98 and 0.98 for MOR, IB, and TS, respectively). This study has shown that the RSM could efficiently be applied for modeling panel properties. It was found that the variables affected the properties of panels. Straw usage up to 30% in the mixture did not cause a significant decrease in MOR, IB, and TS. Using beech veneer and 190 g/m2 glue line had the highest MOR and lowest TS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.