Abstract

The projections of the ventrobasal complex (VB), the ventrolateral complex (VL), and the central intralaminar nucleus (CIN) to the somatic sensory-motor (SSM) cortex of the Virginia opossum were studied with light and electron microscopic autoradiographic methods. VB, VL, and CIN have overlapping projections to SSM cortex and each one also projects to an additional cortical area. Unit responses to somatic sensory stimulation and the areal and laminar distribution of axons in cortex is different for VB, VL, and CIN, but the axons from each form similar round asymmetrical synapses, predominantly with dendritic spines. As in other mammals, VB units in the opossum have discrete, contralateral cutaneous receptive fields. VB projects somatotopically to SSM cortex and also projects to the second somatic sensory representation. Within the cortex, VB axons terminate densely in layer IV and the adjacent part of layer III. A few axons also terminate in the outermost part of layer I and the upper part of layer VI. Most VB axons terminate upon dendritic spines (86.6%), but they also contact dendritic shafts (10%) and neuronal cell bodies (3%). Neurons in VL have no reliable response to somatic stimulation under our recording conditions. VL projects to the SSM cortex and to the posterior parietal area. Throughout this entire projection field VL fibers terminate in layers I, III, and IV most densely, and sparsely in the other cortical layers. The density of termination in the mid-cortical laminae is quite sparse compared to VB, but the projection to layer I is considerably greater. Nearly all (93%) of VL axons contact dendritic spines, the remainder (7%) end on dendritic shafts. CIN is a thalamic target of ascending medial lemniscal, cerebellar, spinal, and reticular formation axons. Neurons in CIN respond to stimulation restricted to a particular body part, but typically responses may be evoked from larger areas and at longer latencies than neurons in VB that are related to the same body part. CIN neurons require a firm tap or electrical stimulation within their receptive field to elicit a response in the anesthetized preparation. CIN axons terminate throughout the entire parietal cortex, but unlike VB and VL, CIN fibers end almost exclusively in the outer part of layer I. Approximately 21% of CIN fibers contact dendritic shafts in layer I, which is twice the percentage of shafts contacted by VL or VB axons. All of the other CIN synapses are formed with dendritic spines. These experiments demonstrate three different pathways to SSM cortex. The results suggest that each projection has a unique role in controlling the patterns of activity of neurons within the SSM cortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call