Abstract
We analyse the L2 Hilbert complexes naturally associated to a non-compact complex manifold, namely the ones which originate from the Dolbeault and the Aeppli-Bott-Chern complexes. In particular we define the L2 Aeppli-Bott-Chern Hilbert complex and examine its main properties on general Hermitian manifolds, on complete Kähler manifolds and on Galois coverings of compact complex manifolds. The main results are achieved through the study of self-adjoint extensions of various differential operators whose kernels, on compact Hermitian manifolds, are isomorphic to either Aeppli or Bott-Chern cohomology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.