Abstract
For a Kahler metric, the Riemannian scalar curvature is equal to twice the Chern scalar curvature. The question we address here is whether this equivalence can hold for a non-Kahler Hermitian metric. For such metrics, if they exist, the Chern scalar curvature would have the same geometric meaning as the Riemannian scalar curvature. Recently, Liu–Yang showed that if this equivalence of scalar curvatures holds even in average over a compact Hermitian manifold, then the metric must in fact be Kahler. However, we prove that a certain class of non-compact complex manifolds do admit Hermitian metrics for which this equivalence holds. Subsequently, the question of to what extent the behavior of said metrics can be dictated is addressed and a classification theorem is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.