Abstract
We recently reported that fear extinction, a form of inhibitory learning, is selectively blocked by systemic administration of L-type voltage-gated calcium channel (LVGCC) antagonists, including nifedipine, in mice. We here replicate this finding and examine three reduced contingency effects after vehicle or nifedipine (40 mg/kg) administration. In the first experiment, contingency reduction was achieved by adding USs to the training protocol (degraded contingency), a phenomenon thought to be independent of behavioral inhibition. In the second experiment, contingency reduction was achieved by varying the percentage of CS-US pairing, a phenomenon thought to be weakly dependent on behavioral inhibition. In the third and fourth experiments, contingency reduction was achieved by adding CSs to the training protocol (partial reinforcement), a phenomenon thought to be completely dependent on behavioral inhibition. We found that none of these reduced contingency effects was impaired by nifedipine. In a final experiment, we found that extinction conducted 1 or 3 h post-acquisition, but not immediately, was LVGCC-dependent. Taken together, the results suggest that reduced contingency effects and extinction depend on different molecular mechanisms and that LVGCC dependence of behavioral inhibition develops with time after associative CS-US learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.