Abstract

Behaviorally adequate neuronal firing patterns are critically dependent on the specific types of ion channel expressed and on their subcellular localization. This study combines in situ electrophysiology with genetic and pharmacological intervention in larval Drosophila melanogaster of both sexes to address localization and function of L-type like calcium channels in motoneurons. We demonstrate that Dmca1D (Cav1 homolog) L-type like calcium channels localize to both the somatodendritic and the axonal compartment of larval crawling motoneurons. In situ patch-clamp recordings in genetic mosaics reveal that Dmca1D channels increase burst duration and maximum intraburst firing frequencies during crawling-like motor patterns in semi-intact animals. Genetic and acute pharmacological manipulations suggest that prolonged burst durations are caused by dendritically localized Dmca1D channels, which activate upon cholinergic synaptic input and amplify EPSPs, thus indicating a conserved function of dendritic L-type channels from Drosophila to vertebrates. By contrast, maximum intraburst firing rates require axonal calcium influx through Dmca1D channels, likely to enhance sodium channel de-inactivation via a fast afterhyperpolarization through BK channel activation. Therefore, in unmyelinated Drosophila motoneurons different functions of axonal and dendritic L-type like calcium channels likely operate synergistically to maximize firing output during locomotion.SIGNIFICANCE STATEMENT Nervous system function depends on the specific excitabilities of different types of neurons. Excitability is largely shaped by different combinations of voltage-dependent ion channels. Despite a high degree of conservation, the huge diversity of ion channel types and their differential localization pose challenges in assigning distinct functions to specific channels across species. We find a conserved role, from fruit flies to mammals, for L-type calcium channels in augmenting motoneuron excitability. As in spinal cord, dendritic L-type channels amplify excitatory synaptic input. In contrast to spinal motoneurons, axonal L-type channels enhance firing rates in unmyelinated Drosophila motoraxons. Therefore, enhancing motoneuron excitability by L-type channels seems an old strategy, but localization and interactions with other channels are tuned to species-specific requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.