Abstract

AbstractThis article investigates the origin of a rare occurrence of kyanite quartzites in the Palaeoproterozoic greenstone belt of Suriname. The rocks form elongated hills in the Bosland area, Brokopondo district, where they are associated with meta-sedimentary, meta-volcanic and granitic lithologies. Their mineral content and unusual Si- and Al-rich chemical composition are inferred to be the result of advanced argillic alteration of felsic volcanic tuffs and a later overprint by regional metamorphism up to lower amphibolite facies during the Trans-Amazonian orogeny. Structurally, the Bosland area seems centred within a contractional strike-slip duplex of a major dextral fault system. The alteration was probably associated with a high-sulphidation environment and involved significant to almost complete removal of alkali and alkaline earth elements. Pseudosection modelling and textures suggest that the precipitation–temperature (P–T) history of the kyanite quartzites started with shallow (<2kbar) hydrothermal alteration of the acidic tuffaceous volcanics, possibly in the andalusite stability field (T>350°C), and ended in peak metamorphic conditions in the kyanite–staurolite stability field (P>4kbar andT=500–650°C). Alteration events that preceded the peak of Trans-Amazonian metamorphism may be more common in the rock record of Suriname's greenstone belt, which lends support to the hypothesis that gold mineralisations in the region can be pre-orogenic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call