Abstract

Abstract In this paper, we present a control system theory based modeling approach for the voltage-gated ion-channel Kv10.1 at different temperatures. Kv10.1 is expressed in the central nervous system and the brain of healthy humans. The study of the activity of this ion channel is important, because its activity is associated with the occurrence of cancer in different organs or tissues. According to systems and control theory, the voltage-gated channel Kv10.1 was assumed to be a linear time-invariant system and, as such, exhibits dynamic behavior. The experimental results show that Kv10.1 operates as a first-order model based on the input voltage step protocol and the measured macroscopic ion current output.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call