Abstract
We propose novel adaptive filtering algorithms based on the mean-fourth error objective while providing further improvements on the convergence performance through proportionate update. We exploit the sparsity of the system in the mean-fourth error framework through the proportionate normalized least mean fourth (PNLMF) algorithm. In order to broaden the applicability of the PNLMF algorithm to dispersive (non-sparse) systems, we introduce the Krylov-proportionate normalized least mean fourth (KPNLMF) algorithm using the Krylov subspace projection technique. We propose the Krylov-proportionate normalized least mean mixed norm (KPNLMMN) algorithm combining the mean-square and mean-fourth error objectives in order to enhance the performance of the constituent filters. Additionally, we propose the stable-PNLMF and stable-KPNLMF algorithms overcoming the stability issues induced due to the usage of the mean fourth error framework. Finally, we provide a complete performance analysis, i.e., the transient and the steady-state analyses, for the proportionate update based algorithms, e.g., the PNLMF, the KPNLMF algorithms and their variants; and analyze their tracking performance in a non-stationary environment. Through the numerical examples, we demonstrate the match of the theoretical and ensemble averaged results and show the superior performance of the introduced algorithms in different scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.