Abstract
In this work, a novel algorithm named sign regressor least mean mixed-norm (SRLMMN) algorithm is proposed as an alternative to the well-known least mean mixed-norm (LMMN) algorithm. The SRLMMN algorithm is a hybrid version of the sign regressor least mean square (SRLMS) and sign regressor least mean fourth (SRLMF) algorithms. Analytical expressions are derived to describe the convergence, steady-state, and tracking behavior of the proposed SRLMMN algorithm. To validate our theoretical findings, a system identification problem is considered for this purpose. It is shown that there is a very close correspondence between theory and simulation. Finally, it is also shown that the SRLMMN algorithm is robust enough in tracking the variations in the channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.