Abstract

Acute myeloid leukaemia (AML) is a prevalent haematological malignancy in which various immune and stromal cells in the bone marrow microenvironment have instrumental roles and substantially influence its progression. KIR2DL is a member of the immunoglobulin-like receptor family and a natural killer (NK) cell surface-specific receptor. However, its impact on immune infiltration regarding AML has not been addressed. We aimed to explore molecular markers associated with the immune microenvironment and prognosis of AML with a particular focus on KIR2DL family members. Analysis of data from The Cancer Genome Atlas and Genotype-Tissue Expression databases revealed that KIR2DL1, KIR2DL3 and KIR2DL4 expression were significantly upregulated in AML and associated with decreased overall survival (OS). Moreover, univariate Cox analysis implicated KIR2DL genes as independent prognostic markers of OS. Functional enrichment analysis revealed that KIR2DL genes were associated with immune cells, the immune microenvironment and NK cell-mediated cytotoxicity. Additionally, immune infiltration analyses revealed that KIR2DL upregulation was associated with stronger immune infiltration. Finally, we performed drug sensitivity profiling of KIR2DL genes using the Cellminer database. Collectively, our findings suggest that KIR2DL1, KIR2DL3 and KIR2DL4 have critical roles in AML and may represent novel biomarker genes for disease prognosis and immune infiltration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call