Abstract

The mechanism and the kinetics of growth of the nitrided zone of ternary Fe-2 at pct Cr-2 at pct Ti alloy was investigated by performing gaseous nitriding experiments at temperatures of 833 K and 853 K (560 °C and 580 °C) and at nitriding potentials r N = 0.004 atm−1/2 and 0.054 atm−1/2. The microstructure of the nitrided zone was investigated by transmission electron microscopy and the elemental compositional variation with depth was determined by employing electron probe microanalysis. Fine platelet-type mixed Cr1 – x Ti x N nitride precipitates developed in the nitrided zone. To describe the evolution of the nitrogen concentration depth profile, a numerical model was developed with the following parameters: the surface nitrogen content, the solubility product(s) of the alloying elements and dissolved nitrogen in the ferrite matrix, and a parameter defining the composition of the inner nitride precipitates. These parameters were determined by fitting model-calculated nitrogen depth profiles to the corresponding experimental data. The results obtained demonstrate that the type of nitride formation (i.e., whether Cr and Ti precipitate separately, as CrN and TiN, or jointly, as mixed Cr1 – x Ti x N) as well as the amounts of mobile and immobile excess nitrogen taken up by the specimen considerably influence the shape and extent of the nitrogen concentration profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call