Abstract
Upon nitriding ferritic iron-based Fe–Cr–Al alloys, containing a total of 1.50 at. % (Cr + Al) alloying elements with varying Cr/Al atomic ratio (0.21–2.00), excess nitrogen uptake occurred, i.e. more nitrogen was incorporated in the specimens than compatible with only inner nitride formation and equilibrium nitrogen solubility of the unstrained ferrite matrix. The amount of excess nitrogen increased with decreasing Cr/Al atomic ratio. The microstructure of the nitrided zone was investigated by X-ray diffraction, electron probe microanalysis, transmission electron microscopy and electron energy loss spectroscopy. Metastable, fine platelet-type, mixed Cr1− x Al x N nitride precipitates developed in the nitrided zone for all of the investigated specimens. The degree of coherency of the nitride precipitates with the surrounding ferrite matrix is discussed in view of the anisotropy of the misfit. Analysis of nitrogen-absorption isotherms, recorded after subsequent pre- and de-nitriding treatments, allowed quantitative differentiation of different types of nitrogen taken up. The amounts of the different types of excess nitrogen as function of the Cr/Al atomic ratio are discussed in terms of the nitride/matrix misfit and the different chemical affinities of Cr and Al for N. The strikingly different nitriding behaviors of Fe–Cr–Al and Fe–Cr–Ti alloys could be explained on this basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.