Abstract

The gasification kinetics of semi-coke are an important research topic in the gasification process of semi-coke. The evolution of the pore structure is one of the most important factors affecting the gasification rate of semi-coke. In this paper, the pore fractal growth model was established based on the principle of pore fractal growth and the Sierpinski sponge structure. Three kinds of semi-coke raw materials were used to prepare porous carbon with different degrees of gasification. Combined with the TG curves of raw materials, the gasification kinetics based on the fractal model were verified. The curves of the gasification reaction rate and the specific surface area as a function of carbon conversion were consistent with the random pore model and experimental data, which verified the feasibility of the model. The pore fractal dynamic model could predict the change in the pore structure with carbon conversion during semi-coke gasification, so as to reveal the kinetic law of carbon gasification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.