Abstract

Isothermal calorimetry was performed on intimate mixtures of CaHPO4·2H2O and Ca4(PO4)2O constituted at Ca/P molar ratios of 1.50 and 1.67 to form the hydroxyapatite compositions Ca9HPO4(PO4)5OH and Ca10(PO4)6(OH)2, respectively, at complete reaction. The temperature range investigated was 15–70°C. The effects of the reaction temperature on the rates of heat evolution during hydroxyapatite formation were determined. Reactions were carried out utilizing a liquid-to-solids weight ratio of 1.0. A two-stage reaction mechanism was observed regardless of the Ca/P ratio as indicated by the presence of two reaction peaks in the plots of the rates of heat evolution against time. An Arrhenius relationship was found between the rate and temperature for each reaction stage for both compositions. Apparent activation energies of 120 and 90 kJ/mol (Ca/P=1.67) and 118 and 83 kJ/mol (Ca/P=1.50), respectively, were calculated for the first and second reaction peaks. An Arrhenius relationship was also found between the time of maximum rate and temperature. The following qualitative reaction mechanism is proposed for each of the two reaction stages for both compositions studied. The first stage involves the complete consumption of CaHPO4·2H2O and the partial consumption of Ca4(PO4)2O to form a noncrystalline calcium phosphate and nanocrystalline hydroxyapatite. During the second stage the remaining Ca4(PO4)2O reacts with the noncrystalline calcium phosphate to form the final product, stoichiometric or calcium deficient hydroxyapatite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call